IncuCyte® Chemotaxis System:
A New and Enabling Solution for Directional Migration Assays

N.J. Bevan1, C. Szybut1, B. O’Clair2, M. Tikhonenko2, L. Gedge1, D.M. Appleford2, and D.J. Trezise1
Essen BioScience Ltd, Welwyn Garden City, AL7 3AX UK and 2Essen BioScience Inc, Ann Arbor, Michigan, 48108 USA

Summary and Impact

- The Transwell® Boyden chamber has been the mainstay in vitro method for measuring directional migration. However, it is widely acknowledged as technically tricky, hard to troubleshoot and frequently yields variable data.
- Essen Bioscience’s new IncuCyte® Chemotaxis System provides a robust walkaway, fully kinetic and image-based solution in a 96-well format.
- The novel ClearView 96-well plate consumable has an ordered array of 8 µm pores created on a viewing surface in each well.
- Directional cell migration across the surface and toward chemoattractant placed in the reservoir of the plate is visualised over time using IncuCyte® live cell imaging and quantified with IncuCyte® Chemotaxis Cell Migration Image Analysis software.
- This integrated solution is validated for both adherent and non-adherent cell types.
- Key benefits include (1) full visualisation of the cell biology, (2) easier workflows, (3) low cell usage, (4) highly reproducible 96-well data and (5) relevant surface biology.

Reproducible 96-well Assays Suitable for Screening

- Robust 96-well assay.
 - Cell density titrations illustrates low cell usage in the assay (assay run at 5K/well).
 - Representative 96-well microplate graph showing Jurkat migration towards the chemotactic SDF-1α (serial dilutions of chemoattractant across the plate).
 - Z’ values ranged from 0.5 to 0.7 for four replicate plates over three days.
 - Corresponding concentration-dependent response curves to SDF-1α provided reproducible measurements of SDF-1α potency (EC50 value range 19 to 33 nM) within and between days.

Measure Pro-Anti-Migration Effects

- Primary T cell CKCR4 pharmacology.
 - Isolated human primary T cells (5K cells/well) were seeded onto a Matrigel® (50 µg/ml) coated ClearView plate and the pharmacologically responsive measured through the endogenous CKCR4 receptor over 30 h.
 - Data (top panel) illustrates the time course and concentration dependent response to the CKCR4 agonist SDF-1α.
 - The response with SDF-1α (50 nM, bottom panel) can be inhibited with AMD3100, known CKCR4 antagonist with an IC50 of 0.3 µM.

Migration Across Relevant 2D Surfaces

- Measure relevant surface contact-mediated cell migration.
 - The low pore density of the ClearView membrane requires cells to migrate across the membrane surface towards the chemoattractant.
 - Neutrophils seeded on a uncoated ClearView membrane were unable to migrate towards the chemoattractants IL-8 and FMLP (A).
 - However, those on Matrigel®-coated membranes showed clear chemotactic profiles (B).
 - These data suggest that integrin and/or cell surface receptor interactions with the substrate play a key role in neutrophil chemotaxis in this model.

Invasion Through 3D Biomatrix

- Use of IncuCyte® ClearView plate for invasion assays.
 - Data generated with nuclear red labelled HT1080 cells (15k/well) grown directly on the ClearView plate (left panel) or within a layer of basement membrane extract (BME, 5mg/ml, right panel) and moving towards 10% FCS.
 - Note larger response to FCS over 70 h for directional migration (left panel). In contrast, invasion through BME (right panel) displays a smaller response. IncuCyte® high-definition images reveal mesenchymal-like morphology and filopodia-like projections into the 3D biomatrix.
 - Invasion but non-migration of cells can be inhibited by the matrix metalloproteinase inhibitor, GM6001, in a concentration dependent manner.